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1. The basic facts that we will use here are that the electric field inside each plate must vanish, and that each
charge density produces a constant electric field proportional to it which is positive above it and negative
below it. So, consider first the region inside the first plate, at the bottom. The electric field gets a positive
contribution from Qb

1 below it and a negative contribution from Qt
1, Q2 and Q3, so we need

Qb
1 −Qt

1 −Q2 −Q3 = 0. (1)

Of course, we also have that Q1 = Qb
1 +Qt

1, and combining these equations, we see that,

Qb
1 =

1
2
(Q1 +Q2 +Q3) (2)

Qt
1 =

1
2
(Q1 −Q2 −Q3) . (3)

Similarly, we find that for the second and third plates,

Qb
2 −Qt

2 +Q1 −Q3 = 0, (4)

Qb
3 −Qt

3 +Q1 +Q2 = 0, (5)

Qb
2 +Qt

2 = Q2, (6)

Qb
3 +Qt

3 = Q3, (7)

leading finally to the expressions,

Qb
1 =

1
2
(Q1 +Q2 +Q3) (8)

Qt
1 =

1
2
(Q1 −Q2 −Q3) (9)

Qb
2 =

1
2
(−Q1 +Q2 +Q3) (10)

Qt
2 =

1
2
(Q1 +Q2 −Q3) (11)

Qb
3 =

1
2
(−Q1 −Q2 +Q3) (12)

Qt
3 =

1
2
(Q1 +Q2 +Q3) . (13)

2. (a) Taking an electron to be a uniformly charged sphere of radius r0 (so its charge density is ρ0 = e
4
3 πr3

0
), we

can compute its electrostatic self energy by computing,

U =
ε0
2

∫
E2dτ. (14)

We use Gauss’s Law to compute �E. First, consider a spherical Gaussian surface inside the electron. This
gives us,

4πr2E(r) =
∫ 2π

0

∫ π

0

∫ r

0

ρ0

ε0
r′2dr′ sin θ′dθ′dφ′ =

4ρ0πr
3

3ε0
(15)

⇒ E(r < r0) =
ρ0r

3ε0
, (16)

for the field inside the sphere, and for a Gaussian surface outside we find,

4πr2E(r) =
∫ 2π

0

∫ π

0

∫ r0

0

ρ0

ε0
r′2dr′ sin θ′dθ′dφ′ =

4ρ0πr
3
0

3ε0
(17)

⇒ E(r > r0) =
ρ0r

3
0

3ε0r2
, (18)

1



Thus, we find that,

U =
ε0
2

∫
E2dτ =

2πρ2
0

9ε0

(∫ r0

0

r4dr +
∫ ∞

r0

r6
0

r2
dr

)
=
3
5

e2

4πε0r0
. (19)

Now, suppose that this self energy is equal to its mass energy,

U = mec
2 =

3
5

e2

4πε0r0
, (20)

then we see that,

r0 =
3
5

e2

4πε0mec2
=
3
5
(1.6× 10−19)2C2 × 9.0× 109V ·m/C

5.1× 105eV × 1.6× 10−19C · V/eV
= 1.7× 10−15m = 1.7fm (21)

(b) Using Gauss’s Law, we see that as the charge inside the shell vanishes, (and as one can also see by
symmetry) the electric field there vanishes. Outside the sphere, the electric field is just that of a point
charge, so we see that,

U =
ε0
2

∫
E2dτ =

4πε0
2

∫ ∞

r0

(
e

4πε0r2

)2

r2dr =
e2

8πε0r0
. (22)

Equating this with the rest mass of the electron, we find that

r0 =
1
2

e2

4πε0mec2
= 1.4fm (23)

3. As the size of each of the sheets is far more than their thickness, we can think of this configuration as consisting
of n parallel plate capacitors in parallel, with a total capacitance given by

nC = nAε/d = 2.3n(1m2)ε0/(2.5× 10−5m) = 8.1n× 10−7As/V = 2.3n× 10−10Ah/V. (24)

We apply 250V to this configuration, and we want

Q = nCV = 500Ah = 250V × 2.3n× 10−10Ah/V ⇒ n = 8.8× 109. (25)

The height of this configuration is,

(2n+ 1)× 2.5× 10−5m = 4.4× 105m. (26)

4. We use the method of images, noting that this configuration is equivalent to a pair of wires, one over the
conductor at a distance D, and its mirror, underneath it a distance D with the opposite charge. Thus, we
expect that the force per unit length exerted on the upper wire should be equivalent to the force per unit
length exerted by the mirror wire. We can easily compute this by noting that this is just the product of the
electric field produced by the mirror wire evaluated at the original wire multiplied by λ, its charge per unit
length. First, we compute the electric field of an infinite wire of charge per unit length −λ using Gauss’s law
on a cylindrical Gaussian surface C of length l using coordinates where the wire is extended along the z-axis,∫

C

�E · da = 2πrlE(r) = 1
ε0

∫
−λδ(x)δ(y)dτ = −λl

ε0

⇒E(r) = − λ

2πrε0
.

(27)

As the wires are a length 2D apart, we see that the force per unit length exerted on the wire by the conducting
plate is just,

F = λE(2D) = − λ2

4πε0D
. (28)
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By Newton’s second Law, this is equal and opposite to the force we wished to compute. For fun, we’ll also
compute this force another way, by first finding the force per unit area on the conductor due to the wire and
then integrating over y, thereby showing the validity of Newton’s second law in this configuration. Now, to do
this, we need to compute the induced surface charge on the conductor, which is related to the discontinuity in
the electric field at the surface of the conductor. The wire is extended along the x direction and is centered at
z = D and y = 0, rather than along the z direction at x = y = 0 as we are used to. We simply inorporate this
by just re-defining r =

√
y2 + (z ±D)2 (the ± is − for the actual wire and + for its image) and use the above

formula for the electric field,

E(y, z) = ∓ λ

2πε0
√

y2 + (z ±D)2
. (29)

However, we must now remember that the field is directed radially along the new r direction, which means
that in components we have,

Ey(y, z) =
y√

y2 + (z ±D)2
E(y, z) (30)

Ez(y, z) =
(z ±D)√

y2 + (z ±D)2
E(y, z) (31)

As we are only concerned with the electric field at z = 0, notice that by symmetry the electric fields of the wire
and its image cancel in the y direction but add in the z direction (as must also be the case for the electric field
along the conducting surface to vanish), and so the electric field at the surface of the conductor is just twice
the z-component of the field produced there by a single wire,

Ez(y, z = 0) = 2× −Dλ

2πε0(y2 +D2)
(32)

The induced surface charge is just, using Griffiths (2.48),

σ = ε0Ez = − Dλ

π(y2 +D2)
, (33)

and the force per unit area exerted on an element of the surface charge by the wire is directed outward normally
with a magnitude given by,

f =
1
2ε0

σ2 =
D2λ2

2π2ε0(D2 + y2)2
. (34)

where the factor of 1/2 is because we don’t want to include the effect of the electric field produced by the image
charges acting on the conductor! If we now integrate this result over all y, we find that (using the substitution
y = D tan θ),

F =
D2λ2

2π2ε0

∫ ∞

−∞

dy

(y2 +D2)2
=

λ2

2π2ε0D

∫ π/2

−π/2

cos2 θdθ =
λ2

4πε0D
. (35)

5.

6. (a) In order to have the component of the electric field along the conductor vanish, we see that the image
charge must have the opposite sign and be at (0, 0,−ε). Thus, the electric field at (0, 0, u) is just the sum
of the fields due to both these point charges,

E = q

4πε0(u− ε)2
− q

4πε0(u+ ε)2
(36)

Now, using the first order Taylor expansion,

(1± x)−2 = 1∓ 2x+ . . . , (37)

we see that the leading dependence on u is given by,

E ≈ q

4πε0u2

(
1 + 2

ε

u
− (1− 2 ε

u
)
)
=

qε

πε0u3
. (38)
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(b) We’d like to find a set of image charges such that the potential is constant along the z = 0 and y = 0
planes. It is easy to guess such a choice - in order to have vanishing electric fields on both the intersecting
planes, we need image charges in each quadrant, with opposite charges across each plane. Thus, we need
a charge −q at both (0,−ε/

√
2, ε/

√
2) and (0, ε/

√
2,−ε/

√
2), as well as a charge q at (0,−ε/

√
2,−ε/

√
2).

To check that this is correct, we compute the potential at any point in the z = 0 and y = 0 planes,

V (x, y) =
q

4πε0
√

x2 + (y − ε/
√
2)2 + ε2/2

− q

4πε0
√

x2 + (y + ε/
√
2)2 + ε2/2

− q

4πε0
√

x2 + (y − ε/
√
2)2 + ε2/2

+
q

4πε0
√

x2 + (y + ε/
√
2)2 + ε2/2

= 0,
(39)

V (x, z) =
q

4πε0
√

x2 + (z − ε/
√
2)2 + ε2/2

− q

4πε0
√

x2 + (z − ε/
√
2)2 + ε2/2

− q

4πε0
√

x2 + (z + ε/
√
2)2 + ε2/2

+
q

4πε0
√

x2 + (z + ε/
√
2)2 + ε2/2

= 0,
(40)

and indeed they vanish. In order to compute the magnitude of the electric field at (0, u/
√
2, u/

√
2), it

is convenient to rotate our coordinate system such that the original charge as well as the point we are
considering are both along the z-axis. The four charges for the edges of a square in the zy plane, with
charges +q at (0, 0,±ε) and −q at (0,±ε, 0). It is clear that the electric field points in the z-direction,
and we can get the magnitude of the electric field by summing the z components of the electric fields due
to each of the four point charges,

E = q

4πε0

(
1

(u− ε)2
+

1
(u+ ε)2

− 2 u

(u2 + ε2)3/2

)
. (41)

Using Taylor approximations to higher order,

(1 + x)m = 1 +mx+ (m(m− 1)/2)x2 + . . . , (42)

we see that when ε 
 u,

E ≈ q

4πε0u2

(
1 + 2

ε

u
+ 3

ε2

u2
+ 1− 2 ε

u
+ 3

ε2

u2
− 2

(
1− (3/2) ε

2

u2

))

=
9qε2

4πε0u4
.

(43)

(c) The idea here is that the previous two cases were the cases n = 1 and n = 2, and we just need to extend
the logic further. In particular, the basic method is as follows. Start with the original charge and construct
images for it associated with both the planes (that is, charges of the opposite sign placed at the position
of the reflection of the original charge across the plane). Now, both the images have one image charge
(namely, the original charge), but might need images along the plane they were not associated with (in
the n = 2 case, this was accomplished through a single image, which will not be the case for higher n).
Now, these images of image charges may further need images along the first plane, and so on. As the angle
between the two planes is an integral fraction of π, this process terminates just as it did for n = 2 when
the final image charge added already has its images along both planes present. It is easy to see that this
configuration will correspond to alternating charges arranged on the vertices of a regular plane polygon
with 2n sides. Now, examining the pattern of the last two problems, we would guess that the electric field
at x = 0 along the bisecting plane on which the original charge was located should go as u−(n+2),

E ∝ εn

4πε0un+2
. (44)
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Let’s try to show that this is in fact true. The potential due to these 2n charges at a point a distance u

along the bisecting plane can be written explictly,

V (u) =
q

4πε0

2n∑
m=1

(−1)m√
(u− ε cosπm/n)2 + ε2 sin2 πm/n

=
q

4πε0

2n∑
m=1

(−1)m√
u2 − 2uε cosπm/n+ ε2

(45)

Thus, we have (with x = ε
u ),

E(u) = −∂V (u)
∂u

=
q

4πε0

2n∑
m=1

(−1)m(u− ε cosπm/n)
(u2 − 2uε cosπm/n+ ε2)3/2

=
q

4πε0u2

2n∑
m=1

(−1)m(1− x cosπm/n)
(1− 2x cosπm/n+ x2)3/2

.

(46)
We would like to know the expansion of the sum as a power series in x, and find the first non-zero term,
i.e. we’d like to Taylor expand it about x = 0. To do this, we need to know the pth partial derivative of
the sum with respect to x evaluated at x = 0,

∂p

∂xp

(
2n∑

m=1

(−1)m(1 + x cosπm/n)
(1− 2x cosπm/n+ x2)3/2

)∣∣∣∣∣
x=0

. (47)

This doesn’t look easy to compute. However, there are a few observations that will allow us to extract
what we need from this. First, since we always evaluate the partial derivatives at x = 0, the denominators
of all these expressions always just become 1, and can be ignored. Second, the expressions in the numerator
are always just polynomials in x and cosπm/n, and when we set x = 0, only the terms indedpendent of
x matter. Further, it is easy to convince yourself that when you take the pth derivative, the maximum
power of cosπm/n that survives after we let x = 0 is p. Thus, the pth derivative evaluated at x = 0 is
just a sum of terms each of the form,

2n∑
m=1

(−1)m cosq πm/n =
2n∑

m=1

cosmπ cosq πm/n, (48)

with q ≤ p. Now, for q < n and q odd and n even or vice-versa, the contributions from the mth term
and the (m + n)th term exactly cancel. Suppose that q < n and q and n are both even. Then, we can
repeatedly use the identity cos2 x = 1

2 (1 + cos 2x) to rewrite equation (48) as a sum of terms of the form
(with 2r < q < n and defining x = −e2rπi/n ),

2n∑
m=1

(−1)m cos 2rπm/n =
1
2

2n∑
m=1

(
(−e2rπi/n)m + (−e−2rπi/n)m

)
=
1
2

2n∑
m=1

(
xm + x−m

)

=
1
2

(
x(x2n − 1)

x− 1 +
(x−2n − 1)
1− x

)
= 0,

(49)

where we’ve used the expression for the sum of a finite geometric series as well as the fact that x±2n =
e±4πir = 1. Similarly, if q < n and q and n are both odd, then we need to consider terms of the form,

2n∑
m=1

(−1)m cos 2rπm
n

cos
π

n
=
1
2

2n∑
m=1

(
(−e

(2r+1)πi
n )m + (−e

(2r−1)πi
n )m + (−e−

(2r+1)πi
n )m + (−e−

(2r−1)πi
n )m

)
= 0

(50)
in the same way. Therefore, we find that the pth derivative of the sum we were considering vanishes for
all p < n, and the first non-zero term will give us a contribution to the electric field of the form we had
guessed,

E ∝ xn

4πε0u2
=

εn

4πε0un+2
. (51)

7.
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8. (a) This is a perfect situation to apply seperation of variables in Cartesian coordinates to solve Laplace’s
equation for the potential along the positive y axis. We look for solutions which are of the product form,
V (x, y, z) = X(x)Y (y)Z(z). In particular, when y = 0, we know that

V (x, y = 0, z) = V0 cos
πx

L
cos

πz

L
, (52)

which immediately implies X(x) = cos πx
L , and Z(z) = cos πz

L . Thus, Laplace’s equation becomes,

∇2V

V
=
1
X

∂2X

∂x2
+
1
Y

∂2Y

∂y2
+
1
Z

∂2Z

∂z2
=
1
Y

∂2Y

∂y2
− 2π2

L2
= 0 (53)

Thus, we see that we must have Y (y) = V0e
−√

2πy/L (where we’ve assumed that V → 0 as y → ∞) and
so,

V (x, y, z) = V0e
−√

2πy/L cos
πx

L
cos

πz

L
. (54)

To calculate the electric field along the y-axis, note that �E = −∇V , and we see that as sin 0 = 0,
Ex = Ez ∝ sin 0 = 0 and �E points along the y direction,

Ey(y) = −∂V

∂y
=

√
2πV0

L
e−

√
2πy/L. (55)

Thus, the electric field decays exponentially in the y-direction with a characteristic length scale given by
L√
2π
.

(b) If this were a 2D problem, we the only change would be that the Z(z) term would no longer be present
in equation (53) above, thereby reducing by a factor of

√
2 the coefficient of the exponential, V (y) =

V0e
−πy/L. This leads to a decay constant of L

π , which indicates a slower decay of the electric field in 2D.

(c) We can calculate the surface charge on the conductor by computing the discontinuity of the electric field
there. Outside, the tubing, the electric field vanishes. As we approach x = L/2 from the inside, we see
that the only non-zero component of the electric field is,

Ex(x = L/2, y > 0, z) = −∂V

∂x
=

πV0

L
e−

√
2πy/L cos

πz

L
(56)

By using a tiny Guassian pillbox just spanning the surface of the tubing, we see that the surface charge
density is proportional to this discontinuity,

σ(x = L/2, y > 0, z) = ε0(0− Ex(x = L/2, y > 0, z)) = −πε0V0

L
e−

√
2πy/L cos

πz

L
. (57)

Now, we can find the total induced charge on all four sides by just integrating this over the region y > 0
and z ∈ [−L/2, L/2] (which is half of one of the four sides of the tubing) and multiplying by eight,

Qi = 2× 4× −πε0V0

L

∫ ∞

0

e−
√

2πy/Ldy

∫ L/2

−L/2

cos
πz

L
dz = −8

√
2ε0V0. (58)

The induced charge on the membrane can be computed as follows. Imagine making the conducting outer
walls of the tubing thicker and consider a Gaussian surface within those walls. The electric field vanishes
there and so must the total charge enclosed QT = Qm +Qi = 0, which gives us,

Qm = −Qi = 8
√
2ε0V0. (59)
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